
Decentralized Systems Engineering

CS-438 – Fall 2023

Pierluca Borsò-Tan

Credits: B. Ford

Do you need a blockchain ?

Can you

Permissioned blockchainPermissionless blockchain

Do you need a blockchain ?

Bitcoin

Revisited

Goals

● Currency with no trusted, central authority

● Works online (like a credit card)

● Anonymous / pseudonymous (“like cash”)

● Non-reversible transactions

(probabilistic finality is OK)

● Conditional payments (like contracts)

→ Permissionless Consensus

→ Cryptography

→ Append-only (“block chain”)

→ Later today ;)

Blockchain structure

Transactions Transactions

Key ideas

Proof-of-Work

● “Miners” solve computational puzzles (hash with leading N zeros)

Computational power = Hash rate (H/s)

● Puzzle difficulty is adjusted to keep block rate (roughly) constant

→ compensates for changes in mining power

Block 3
10 min

Assumptions

● Threshold assumption: majority of mining power is honest

… independently of the number of nodes

● Longest / heaviest chain rule

… transient safety violations (e.g. forks, reversed transactions) are OK

… eventually forks will be resolved (based on expended work) !

● Probabilistic finality – 6 blocks (1h)

● Economic incentive compatibility

● Network connectivity / propagation – synchrony assumption (10 min)

Block

3
Block

2

Block

1
Block

3’

Block

4

Block

4’

Block

5

Transactions – UTXO vs Account

How can we model transactions ?

● Cash (UTXO)

→ Bitcoin

● Bank (Account)

→ Ethereum (later today)

What are the advantages and disadvantages of each ?

UTXO1

UTXO2

UTXO3

Transaction

UTXO4

UTXO5

Transaction

From

To

Amount

sender

receiver

$

Sender

account

Receiver

Account

Where are the transactions before a block ?

Bitcoin’s (and other blockchains’) nodes deal with two storage pools:

● The blockchain

→ final (probabilistically)

→ eventually, the single source of truth

● The memory pool (aka “the mempool”)

→ “in-flight” transactions

→ propagated among nodes

→ the source of transactions in a block

Bitcoin Transactions

UTXO 11

UTXO 12

UTXO 13

UTXO 34

UTXO 35

Version (4 bytes)

Locktime (4 bytes)

Inputs Outputs

Version (4 bytes)

Locktime (4 bytes)

Inputs Outputs

UTXO 46UTXO 35

UTXO 20

Bitcoin Transactions

UTXO 11

UTXO 12

UTXO 13

UTXO 34

UTXO 35

Version (4 bytes)

Locktime (4 bytes)

Inputs Outputs

Amount (8 bytes)

Locking Script

● Simple case (P2PKH):

check recipient’s hashed

public key & signature

“Pay to PubKey Hash”

Bitcoin Transactions

UTXO 11

UTXO 12

UTXO 13

UTXO 34

UTXO 35

Version (4 bytes)

Locktime (4 bytes)

Inputs Outputs

Amount (8 bytes)

Locking Script

● Simple case (P2PKH):

recipient’s public key

● General case (P2SH):

Code to check validity

of a spend request

(binary output)

“Pay to Script Hash”

Bitcoin Transactions – Inputs

UTXO 11

UTXO 12

UTXO 13

UTXO 34

UTXO 35

Version (4 bytes)

Locktime (4 bytes)

Inputs Outputs

● Simple case:

Signature proving

ownership of bitcoin

● General:

Arbitrary binary

input to script

Transaction Hash (32 bytes)

Unlocking Script

Output Index (4 bytes)

Bitcoin Scripting

Putting it all together …

● UTXO destination can be a script (Lock Script)

● Script checks spending authorization

● Transaction input must provide data satisfying the check (Unlock Script)

Enables non-trivial logic:

● Multi-signatures (t-of-n)

● Time lock vaults / contracts

● Payment channels (Lightning net)

● Notaries, side-chains

Bitcoin Scripting: example

Multi-signer authorization (multi-sig)

● Any t of n co-signers can authorize spending

● Ex. logic for t=2, n=3

Script: a  0

a  a + check(Ki , T, I[0…63])

a  a + check(Ki , T, I[64…127])

a  a + check(Ki , T, I[128…191])

return (a >= 2)

Scripts – Who runs them ?

● User who wants to spend

● All miners when including the transaction in a block

→ first to create the block

→ then to validate the block

● Miners need to achieve consensus in block validity

● Determinism is paramount !

Bitcoin Scripting limitations

● Only a limited number of bytecodes

● No backward branches

● Bytecode limited (1 block < 1MB, pre-SegWit)

● Completely deterministic

● Inefficiency of deterministic VM

Ethereum

Smart Contracts

Ethereum – Generalizing smart contracts

● Account-based

… account persist across transactions

● Richer bytecode language

… still limited

… but Turing complete, with loops !

How can we deal with infinite / unbounded execution ?

Ethereum – Gas

● Deterministic, virtual execution time

… (weighed) instruction count

● Each script execution has a gas limit

… that must be paid up-front (invoker or script)

… charged based on usage

● If script succeeds within gas limit, effects yield atomic state change

● If script exhausts gas limit, no state change – but gas still charged

Smart Contracts – Applications

● Trustless Insurance – AXA Fizzy (flight delays insurance)

● New payment/finance methods

● Decentralized naming – † Namecoin (DNS-like), Filecoin, …

● Tokenization – ICOs (Initial Coin Offerings), NFTs, …

● Storage – on-chain, off-chain management

● Programmable markets – auctions, prediction markets, quadratic voting, …

● Games – gambling, CryptoKitties, etc.

● Decentralized governance – DAOs

● Automated market makers – Uniswap (trade between coins)

Smart contracts – Issues & limitations

● Inefficiency of deterministic VM

● Oracle problem

● Front-running attacks / “Dark Forest”

● Secrets

● Smart contract bugs (ex. “The DAO”)

● Improvements/evolution is difficult

→ eWASM

→ Trusted authority

→ Decentralized Oracles

→ Active research area

→ Keep secrets off-chain + zk-proofs

→ On-chain secrets (Calypso)

→ Recourse ? Recovery ?

→ Permissionless innovation? Versioning?

Next steps

Optional readings:

● Ethereum: A Secure Decentralised General Transaction Ledger

● Ethereum is a Dark Forest

● The Law and Legality of Smart Contracts

→ Use Friday’s session to ask questions

24

	Motivation
	Slide 1: Decentralized Systems Engineering
	Slide 2: Do you need a blockchain ?
	Slide 3: Do you need a blockchain ?

	Bitcoin
	Slide 4: Bitcoin
	Slide 5: Goals
	Slide 6: Blockchain structure
	Slide 7: Key ideas
	Slide 8: Assumptions
	Slide 9: Transactions – UTXO vs Account
	Slide 10: Where are the transactions before a block ?
	Slide 11: Bitcoin Transactions
	Slide 12: Bitcoin Transactions
	Slide 13: Bitcoin Transactions
	Slide 14: Bitcoin Transactions – Inputs
	Slide 15: Bitcoin Scripting
	Slide 16: Bitcoin Scripting: example
	Slide 17: Scripts – Who runs them ?
	Slide 18: Bitcoin Scripting limitations

	Ethereum
	Slide 19: Ethereum
	Slide 20: Ethereum – Generalizing smart contracts
	Slide 21: Ethereum – Gas

	Applications
	Slide 22: Smart Contracts – Applications

	Conclusions
	Slide 23: Smart contracts – Issues & limitations
	Slide 24: Next steps

