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Do you need a blockchain ?
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Bitcoin

Revisited



Goals

e Currency with no trusted, central authority - Permissionless Consensus
e Works online (like a credit card)
e Anonymous / pseudonymous (‘like cash”) - Cryptography

e Non-reversible transactions - Append-only (“block chain®)
(probabilistic finality is OK)

e Conditional payments (like contracts) —> Later today ;)



Blockchain structure
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Key ideas

Proof-of-Work

e “Miners” solve computational puzzles (hash with leading N zeros)
Computational power = Hash rate (H/s)

e Puzzle difficulty is adjusted to keep block rate (roughly) constant
- compensates for changes in mining power
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Assumptions

e Threshold assumption: majority of mining power is honest
... independently of the number of nodes

e Longest/ heaviest chain rule
... transient safety violations (e.g. forks, reversed transactions) are OK
... eventually forks will be resolved (based on expended work) !

e Probabilistic finality — 6 blocks (1h)
e Economic incentive compatibility
e Network connectivity / propagation — synchrony assumption (10 min)



Transactions — UTXO vs Account

How can we model transactions ?

e Cash (UTXO)

- Bitcoin

/" Transaction

Sender

e Bank (Account) account

From PESEa6ER

To receiver

Receiver
Account

- Ethereum (later today)

\Amount

What are the advantages and disadvantages of each ?



Where are the transactions before a block ?

Bitcoin’s (and other blockchains’) nodes deal with two storage pools:

e The blockchain
—> final (probabilistically)
- eventually, the single source of truth

e The memory pool (aka “the mempool”)
= “in-flight” transactions
—> propagated among nodes
—> the source of transactions in a block



Bitcoin Transactions
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Bitcoin Transactions “‘Pay to PubKey Hash”

Version (4 bytes) Amount (8 bytes)

Inputs Outputs Locking Script

M e Simple case (P2PKH):
H check recipient’s hashed

public key & signature

Locktime (4 bytes)




Bitcoin Transactions “Pay to Script Hash”

Version (4 bytes) Amount (8 bytes)

Inputs Outputs Locking Script

M e Simple case (P2PKH):
n recipient’s public key

e General case (P2SH):
Code to check validity
of a spend request
(binary output)

Locktime (4 bytes)




Bitcoin Transactions — Inputs

Transaction Hash (32 bytes) Version (4 bytes)

Unlocking Script

e Simple case:
Signature proving

Output Index (4 bytes) Inputs Outputs
ownership of bitcoin
e General:

Arbitrary binary

a0k

iInput to script Locktime (4 bytes)




Bitcoin Scripting

Putting it all together ...

e UTXO destination can be a script (Lock Script)
e Script checks spending authorization
e Transaction input must provide data satisfying the check (Unlock Script)

Enables non-trivial logic:

Multi-signatures (t-of-n)

Time lock vaults / contracts
Payment channels (Lightning net)
Notaries, side-chains



Bitcoin Scripting: example
Multi-signer authorization (multi-sig)
e Anyt of n co-signers can authorize spending
e EX. logic for t=2, n=3

Script: a< 0
a < a+ check(Ki, T, I1[0...63])
a < a+check(Ki, T, I[64...127])
a < a+ check( Ki, T, I[128...191])
return (a >= 2)



Scripts — Who runs them ?

e User who wants to spend

e All miners when including the transaction in a block
—> first to create the block
—> then to validate the block

e Miners need to achieve consensus in block validity

e Determinism is paramount !



Bitcoin Scripting limitations
e Only a limited number of bytecodes
e No backward branches
e Bytecode limited (1 block < 1MB, pre-SegWit)
e Completely deterministic

e Inefficiency of deterministic VM



Ethereum

Smart Contracts



Ethereum — Generalizing smart contracts

e Account-based
... account persist across transactions

e Richer bytecode language
... still limited
... but Turing complete, with loops !

How can we deal with infinite / unbounded execution ?



Ethereum — Gas

e Deterministic, virtual execution time
... (weighed) instruction count

e Each script execution has a gas limit
... that must be paid up-front (invoker or script)
... charged based on usage

e If script succeeds within gas limit, effects yield atomic state change

e If script exhausts gas limit, no state change — but gas still charged



Smart Contracts — Applications

e Trustless Insurance — AXA Fizzy (flight delays insurance)

e New payment/finance methods

e Decentralized naming — T Namecoin (DNS-like), Filecoin, ...
e Tokenization — ICOs (Initial Coin Offerings), NFTs, ...

e Storage — on-chain, off-chain management

e Programmable markets — auctions, prediction markets, quadratic voting, ...

e Games — gambling, CryptoKitties, etc.
e Decentralized governance — DAOs

e Automated market makers — Uniswap (trade between coins)



Smart contracts — Issues & limitations

e Inefficiency of deterministic VM

e Oracle problem

e Front-running attacks / “Dark Forest”

e Secrets

e Smart contract bugs (ex. “The DAQO?)

e Improvements/evolution is difficult

- eWASM

- Trusted authority
- Decentralized Oracles

- Active research area

- Keep secrets off-chain + zk-proofs
- On-chain secrets (Calypso)

- Recourse ? Recovery ?

- Permissionless innovation? Versioning?



Next steps

Optional readings:

e Ethereum: A Secure Decentralised General Transaction Ledger
e Ethereum is a Dark Forest

e The Law and Legality of Smart Contracts

- Use Friday’s session to ask questions

24
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