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Do you need a blockchain ?

Can you

Permissioned blockchainPermissionless blockchain



Do you need a blockchain ?



Bitcoin

Revisited



Goals

● Currency with no trusted, central authority

● Works online (like a credit card)

● Anonymous / pseudonymous (“like cash”)

● Non-reversible transactions

(probabilistic finality is OK)

● Conditional payments (like contracts)

→ Permissionless Consensus

→ Cryptography

→ Append-only (“block chain”)

→ Later today ;) 



Blockchain structure

Transactions Transactions



Key ideas

Proof-of-Work

● “Miners” solve computational puzzles (hash with leading N zeros)

Computational power = Hash rate (H/s)

● Puzzle difficulty is adjusted to keep block rate (roughly) constant

→ compensates for changes in mining power

Block 3
10 min



Assumptions

● Threshold assumption: majority of mining power is honest

… independently of the number of nodes

● Longest / heaviest chain rule

… transient safety violations (e.g. forks, reversed transactions) are OK

… eventually forks will be resolved (based on expended work) !

● Probabilistic finality – 6 blocks (1h)

● Economic incentive compatibility

● Network connectivity / propagation – synchrony assumption (10 min)

Block 

3
Block 

2

Block 

1
Block 

3’

Block 

4

Block 

4’

Block 

5



Transactions – UTXO vs Account

How can we model transactions ?

● Cash (UTXO)

→ Bitcoin

● Bank (Account)

→ Ethereum (later today)

What are the advantages and disadvantages of each ?
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Where are the transactions before a block ?

Bitcoin’s (and other blockchains’) nodes deal with two storage pools:

● The blockchain

→ final (probabilistically)

→ eventually, the single source of truth

● The memory pool (aka “the mempool”)

→ “in-flight” transactions

→ propagated among nodes

→ the source of transactions in a block



Bitcoin Transactions

UTXO 11

UTXO 12

UTXO 13

UTXO 34

UTXO 35

Version (4 bytes)

Locktime (4 bytes)

Inputs Outputs
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Bitcoin Transactions

UTXO 11

UTXO 12

UTXO 13

UTXO 34

UTXO 35

Version (4 bytes)

Locktime (4 bytes)

Inputs Outputs

Amount (8 bytes)

Locking Script

● Simple case (P2PKH):

check recipient’s hashed 

public key & signature

“Pay to PubKey Hash”



Bitcoin Transactions

UTXO 11

UTXO 12

UTXO 13

UTXO 34

UTXO 35

Version (4 bytes)

Locktime (4 bytes)

Inputs Outputs

Amount (8 bytes)

Locking Script

● Simple case (P2PKH):

recipient’s public key

● General case (P2SH):

Code to check validity

of a spend request

(binary output)

“Pay to Script Hash”



Bitcoin Transactions – Inputs 

UTXO 11

UTXO 12

UTXO 13

UTXO 34

UTXO 35

Version (4 bytes)

Locktime (4 bytes)

Inputs Outputs

● Simple case:

Signature proving 

ownership of bitcoin

● General:

Arbitrary binary

input to script

Transaction Hash (32 bytes)

Unlocking Script

Output Index (4 bytes)



Bitcoin Scripting

Putting it all together … 

● UTXO destination can be a script (Lock Script)

● Script checks spending authorization

● Transaction input must provide data satisfying the check (Unlock Script)

Enables non-trivial logic:

● Multi-signatures (t-of-n)

● Time lock vaults / contracts

● Payment channels (Lightning net)

● Notaries, side-chains



Bitcoin Scripting: example

Multi-signer authorization (multi-sig)

● Any t of n co-signers can authorize spending

● Ex. logic for t=2, n=3

Script: a  0

a  a + check( Ki , T, I[0…63])

a  a + check( Ki , T, I[64…127])

a  a + check( Ki , T, I[128…191])

return (a >= 2)



Scripts – Who runs them ?

● User who wants to spend

● All miners when including the transaction in a block

→ first to create the block

→ then to validate the block

● Miners need to achieve consensus in block validity

● Determinism is paramount !



Bitcoin Scripting limitations

● Only a limited number of bytecodes

● No backward branches

● Bytecode limited (1 block < 1MB, pre-SegWit)

● Completely deterministic

● Inefficiency of deterministic VM



Ethereum

Smart Contracts



Ethereum – Generalizing smart contracts

● Account-based

… account persist across transactions

● Richer bytecode language

… still limited

… but Turing complete, with loops !

How can we deal with infinite / unbounded execution ?



Ethereum – Gas

● Deterministic, virtual execution time

… (weighed) instruction count

● Each script execution has a gas limit

… that must be paid up-front (invoker or script)

… charged based on usage

● If script succeeds within gas limit, effects yield atomic state change

● If script exhausts gas limit, no state change – but gas still charged



Smart Contracts – Applications

● Trustless Insurance – AXA Fizzy (flight delays insurance) 

● New payment/finance methods

● Decentralized naming – † Namecoin (DNS-like), Filecoin, …

● Tokenization – ICOs (Initial Coin Offerings), NFTs, …

● Storage – on-chain, off-chain management

● Programmable markets – auctions, prediction markets, quadratic voting, …

● Games – gambling, CryptoKitties, etc.

● Decentralized governance – DAOs

● Automated market makers – Uniswap (trade between coins)



Smart contracts – Issues & limitations

● Inefficiency of deterministic VM

● Oracle problem

● Front-running attacks / “Dark Forest”

● Secrets

● Smart contract bugs (ex. “The DAO”)

● Improvements/evolution is difficult

→ eWASM

→ Trusted authority

→ Decentralized Oracles

→ Active research area

→ Keep secrets off-chain + zk-proofs

→ On-chain secrets (Calypso)

→ Recourse ? Recovery ?

→ Permissionless innovation? Versioning?



Next steps

Optional readings:

● Ethereum: A Secure Decentralised General Transaction Ledger

● Ethereum is a Dark Forest

● The Law and Legality of Smart Contracts

→ Use Friday’s session to ask questions

24
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